London Lab

36. Kelly TK, Ahmadiantehrani S, Blattler A, London SE. (2018). Epigenetic regulation of transcriptional plasticity associated with developmental song learning. 285(1878). Proceedings of the Royal Society B: Biological Sciences.

UChicagoNews press release
UChicago Social Sciences Division press release

35. Ahmadiantehrani S, Gores EO, London SE. (2018) A complex mTOR response in habituation paradigms for a social signal in adult songbirds. Learning and Memory. 25: 273-282.

34. London SE. (in press) Developmental song learning is a model to understand neural mechanisms that limit and promote the ability to learn. Behavioural Processes

33. Ahmadiantehrani S, London SE. (2017). Bidirectional manipulation of mTOR signaling disrupts socially-mediated communication learning in juvenile songbirds. Proceedings of the National Academy of Sciences.
UChicagoNews press release
YouTube accompanying video

32. Ahmadiantehrani S, London SE. (2017). A reliable and flexible gene manipulation strategy in posthatch zebra finch brain. Scientific Reports. 7:43244.

31. London SE. (2016). Influences of non-canonical neurosteroid signaling on developing neural circuits. Current Opinion in Neurobiology.

30. Louder MIM, Voss HU, Manna T, Carryl S, London SE, Balakrishnan CN, Hauber ME. (2016). Shared neural substrates of species recognition in parental and parasitic songbirds. Neuroscience Letters. 622:49-54.

29. Cacioppo S, Grippo AJ, London S, Goossens L, Cacioppo JT. (2015). Loneliness: Clinical import and interventions. Perspectives on Psychological Science. 10 (2): 238-249.

28. Lin LC, Vanier DR, London SE. (2014) Social information embedded in vocalizations induces neurogenomic and behavioral responses. PLoS One.
9(11): e112905.

27. Fusani L, Donaldson Z, London SE, Fuxjager MJ, and Schlinger BA. (2014) Expression of androgen receptor in the brain of a non-oscine bird with an elaborate courtship display. Neuroscience Letters. 578:61-65.

26. Balakrishnan CN, Mukai M, Gonser RA, Wingfield JC, London SE, Tuttle EM, Clayton DF. (2014) Brain transcriptome sequencing and assembly of three songbird model systems for the study of social behavior. PeerJ.

25. Clayton DF and London SE. (2014) Advancing avian behavioral neuroendocrinology through genomics. Frontiers in Neuroendocrinology. 35(1):58-71.

24. London SE. (2013) Prospective: how the zebra finch genome strengthens brain-behavior connections in songbird models of learned vocalization. In Animal Models of Speech and Language Disorders, Santosh Helekar, editor.

23. London SE. (2013) Genome-brain-behavior interdependencies as a framework to understand hormone effects on learned behavior. General and Comparative Endocrinology.

22. Drnevich J, Replogle K, Arnold AP, Ball GF, Brenowitz E, Johnson F, London SE, Lovell P, Mast TG, Mello C, Mukai M, Strand C, Wade J, Wingfield JC, and Clayton DF. (2012) The impact of experience-dependent and -independent factors on gene expression in songbird brain. Proceedings of the National Academy of Sciences. 16;109 Suppl 2:17245-52. PMC ID: 3477375

21. Balakrishnan CN, Lin Y-C, London SE, Clayton DF. (2012) RNA-seq transcriptome analysis of male and female zebra finch cell lines. Genomics.100(6):363-9. PMC ID: 3508314.

20. London SE and Clayton DF. (2010) The neurobiology of zebra finch song: insights from gene expression studies. Emu-Austral Ornithology. 110(3):

19. Xie F*, London SE*, Southey BS*, Annangudi SP, Wadhams AA, Clayton DF, Sweedler JA. (2010) The zebra finch neuropeptidome: prediction, detection and expression.  BMC Biology. 8(1):28.
     *these authors contributed equally

18. Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Heger A, Kong L, Ponting CP, Jarvis E, Mello CV, Minx P, Yang S-P, Lovell P, Velho TAF, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin Y-C, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backstrom N, Smeds L, Nabholz B, Itoh Y, Howard J, Pffenning A, Whitney O, Völker M, Skinner BM, Griffin DK, Ye L, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Oleander T, Lancet D, Villela A, Smit AFA, Hubley R, Konkel M, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng G, Eichler E, Stapley J, Slate J, Ekblom R, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, and Wilson RK. (2010) The genome of a songbird. Nature. 464(7289):757-62. PMC ID: 3477375.

17. London SE, Itoh Y, Lance VA, Wise PM, Ekanayake PS, Arnold AP, Schlinger BA. (2010) Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17
b-HSD type 4. BMC Neuroscience. 11(1):47.

16. London SE and Clayton DF. (2010) Genomic and neural analysis of the estradiol-synthetic pathway in the zebra finch. BMC Neuroscience.

15. Remage-Healey L, London SE, Schlinger BA. (2010) Birdsong and the neural production of steroids. Journal of Chemical Neuroanatomy. 39(2): 72-81.

14. Clayton DF, Balakrishnan CN, London SE. (2009) Integrating genomes, brain and behavior in the study of songbirds.  Current Biology.
19(18): R865 - R873.

13. London SE, Remage-Healey L, Schlinger BA. (2009) Neurosteroid production in the songbird brain: a re-evaluation of core principles.  Frontiers in Neuroendocrinology. 30(3):302-314. PMC ID: 2724309

12. London SE, Dong S, Replogle K, Clayton DF. (2009) Developmental shifts in gene expression in the auditory forebrain during the sensitive period for song learning. Developmental Neurobiology. 69(7):437-450.

11. London SE and Clayton DF. (2008) Functional identifcation of sensory
mechanisms required for developmental song learning. Nature

10. Sloley S, Smith S, Gandhi S, Busby JA, London S, Luksch H, Clayton DF, Bhattacharya SK. (2007) Proteomic analyses of zebra finch optic tectum and comparative histochemistry. Journal of Proteome Research. 6(6):2341-2350.

9. London SE and Schlinger BA. (2007) Steroidogenic enzymes along the
ventricular proliferative zone in the developing songbird brain.  Journal of
Comparative Neurology.

8. Sloley S, Smith S, Algeciras M, Caldwell Busby JA, London S, Clayton
DF, Bhattacharya SK. (2007) Proteomic analyses of songbird (zebra finch;
Taeniopygia guttata) retina. Journal of Proteome Research. 6(3):1093-100.

7.  London SE, Monks DA, Wade J, Schlinger BA. (2006) Widespread
capacity for neurosteroid synthesis in the avian brain and song system.
Endocrinology. 147(12):5975-87.

6.  Schlinger BA and London SE. (2006) Neurosteroids and the songbird
model system. Journal of Experimental Zoology. 305A(9):743-748.

5.  Schlinger BA, Soma KK, London SE. (2006) Integrating steroid
synthesis with steroid action: multiple mechanisms in birds.  Acta
Zoologica Sinica.
52(Supp): 238-241.

4.  Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA. (2004)
Parallel FoxP1 and FoxP2 expression in songbird and human brain
predicts functional interaction. Journal o Neuroscience. 24:3152-63.

3.  London SE, Boulter J, Schlinger BA.  (2003) Cloning of the zebra finch
androgen synthetic enzyme CYP17: a study of its neural expression
throughout posthatch development. Journal of Comparative Neurology.

2.  Schlinger BA, Soma KK, London SE. (2001) Neurosteroids and brain
sexual differentiation. Trends in Neuroscience. 24(8):429-31.

1.  Saldanha CJ, Schultz JD, London SE, Schlinger BA. (2000)
Telencephalic aromatase but not a song circuit in a sub-oscine passerine,
the golden-collared manakin (Manacus vitellinus). Brain Behavior and
. 56(1): 29-37.

In process

Kelly TK, Ahmadiantehrani S, London SE. (in revision). Epigenetic regulation of transcriptional plasticity is associated with developmental song learning.

Layden EA, Schertz KE, London SE, Berman MG. (submitted) Interhemispheric integration for complex behaviors, absent the Corpus Callosum in normal ontogeny.
  available on bioRxiv doi: 

Lansverk AL, London SE, Griffith SC, Clayton DF, Balakrishnan CN. (submitted) The variability of song variability in wild and domesticated zebra finches Taeniopygia guttata.
   available on bioRxiv doi:

Layden EA, Berman MG, London SE. (in preparation) Dynamics of functional connectivity shift across learning networks according to age, sex, and experience.

Publications (trainees underlined)